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X-RAY DIFFRACTION STUDY OF PHASE FORMATION AND GROWTH
IIt NITROGEN IMPLANTED IRON: TEMPERATURE EFFECTS

R.J. ARNOTT, F.C. BURNS, L.G. CARREIRO, D.R. CHIPMAN, V.J. CROFT,
S.A. JOHNSON, J.V. NARZIK, and P.L.SAGALYN
U.S. Army Materials Technology Laboratory, Bldg 292, Watertown, MA, 02172

ABSTRACT

We report preliminary results from an ongoing study of iron nitride grains
formed in high purity iron under nitrogen ion bombardment. Under various
implantation conditions, different iron nitride phases grow large enough
to produce sharp x-ray diffraction lines. We have used these lines to
examine the influence of target temperature during implantation. Between
200*C and 4000C increasing target temperature, which enhances dopant mobility,
reduces the retained dose of nitrogen and restricts the formation of nitride
phases. Over this temperature range, however, increasing vacancy mobility
favors the growth of nitride grains and x-ray line breadth data suggests
an optimum temperature for growth of Fe4N grains.

INTRODUCTION

One of the dominant mechanisms by which ion implantation hardens structural
materials is the formation of second phase prec.ipitates.[1,21 Extensive
transmission electron microscope (TEM) work has demonstrated that nitrogen
implanted iron contains microscopic grains of a variety of stable and
meta-stable iron nitride phases.j3,4,5,61 Typically, these grains are quite

small and are identified from densitometer traces of electron diffraction
patterns which reveal a rich array of minute grains with only slightly
different lattice parameters. Thus, it is often difficult to resolve adjacent
diffraction peaks and obtain quantitative information.

X-ray diffraction (XRD), traditionally a bulk analysis technique, has rarely
been applied to ion implanted structural materials because of the typically
shallow surface layers (= .lum) involved. However, by using x-rays which are
strongly absorbed by the host material along with a crystal monochromator to
curtail the resulting fluorescence, it is possible to obtain surface
information from XRD.[7] The most prominent feature of our measured XRD
patterns is the appearance of sharp iron nitride lines corresponding to large
crystallites of Fe2N and Fe4 N. X-ray diffraction, which is not sensitive
to small grains but offers extremely vell-resolved lines, is a particularly use-
ful technique for quantitative studies of the formation and growth of large grains.

mESI

Polycrystalline iron foils were held at fixed temperatures between 2000C
and 4000C as they were ion implanted. For each temperature, a foil was sequentially
implanted vith fixed doses of nitrogen ions (2.4x0 ions/cm2 ) at each of three
energies (80, 60, 40 keY). The foils were then examined by XRD and were
examined in a scanning electron microscope (SEN) with subsequent elemental
analysis by wavelength dispersive x-ray spectrometry (WDS) in the SEM.
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Figure 1
Schematic of stage for controlling target temperature during im-
plantation. Stage is heated by 1-4 keV electrons from tungsten
filament and cooled by copper braids.

The iron samples (99.999Z, 25mm x 25mm x 2mm)[81 were mechanically
polished to a 1 um surface finish and chemically etched. The foils were clamped
between thick copper plates (Figure 1). The entire assembly was heated by
an electron gun and cooled by copper braids connected to a cold water
bath. The front plate masked half the target area from the ion beam and
provided an un-implanted control for each implantation. Target temperature
vas monitored by a chroiel-alumel thermocouple mounted in a cylindrical
cavity directly behind the target. An additional tantalum mask shielded
all but the 25= x 25mm target area from the ion beam to reduce beam
heating and improve temperature stability.

The implantations were performed in a Zymet Z-100 ion implanter.f9J
Magnetic mass selection is not available in this implanter so the targets
were exposed to the raw output of the Freeman ion source. The ion source
is known to produce roughly 70% N and 30% N 2  ions although this was not
monitored during these experiments. This implanter employs a bright pencil
beam (a 4m x 150mm) which is mechanically rastered across the target area.
Typical peak current density during these experiments was 150 PA/cm2 and
typical average current denjity was 30 tAk/cm 2 . Typical base pressure in
the vacuum chamber was 4xlO- Torr and typical pressure during implantation
was 1xlO" Torr.

X-ray diffraction patterns were obtained on a Norelco diffractometer
using intense Cu Ke radiation (X - 1.5405 A). Since this is well below
the absorption edge In iron (1.7 A), the diffracted radiation was filtered
by a graphite crystal monochromator to suppress fluorescence from the iron.
Patterns were obtained for the implanted and un-implanted sections of all
samples between 12' S 2e < 720 and selected patterns were digitized
for further analysis.

Microanalyses were performed using a JEOL JXA-840 scanning electron
microscope equipped with two JEOL wavelength dispersive x-ray (VDS) spectro-
meters and a Tracor Northern 5500/5600 x-ray and image analyzer. Quantitative
analysis for Fe, N, C, and 0 were performed by UDS and the data were corrected
for atomic number, absorption and fluorescence using a Tracor Northern ZAF

program.[1O-



RESULTS AND DISCUSSION

Even at the lover temperatures, the XRD patterns show evidence of iron nitride
phases (Figure 2). Peaks corresponding to y'-Fe4N appear in all patterns
although these peaks are quite weak in the 2004C sample. This sample exhibits
the (021) and (400) peaks of C-Fe 2 N. In the 2500 and 3001 samples, we have
tentatively attributed the 43.20 peak to the strongest reflection of the
Y-austenite iron nitrogen solid solution even though Pe N should shov a peak
at roughly the same angle.141 Over this temperature range, increasing
temperature favors the formation of a nitride phase vith stoichiometrically
less nitrogen.
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Figure 2 Figure 3
Phases vith lover nitrogen content Line intensities sugges't an
are favored at higher temperatures. optimum temperature for growth
1) y'-Fe N(220), 2)C-Fe N (400) 1) y'-Fe N(200), 2)C-Fe N (400)
3)5-Fe (200), 4) Y '-Fe4N(200) 3)%-Fe (200), 4) Y'-Fe4N(200)
5)s-Fe (110), 6) see text 5)%-Fe (110), 6) see text
7) C-Fe 2N (211), 8) Y'-Fe4N(111) 8) y '-Fe4N(111 )

At the higher temperatures, (Figure 3) the XRD patterns show predominately
the y'-Fe 4 N phase which presents peaks with intensities comparable to the
low angle s-Fe peak. The iron nitride lines tend to become stronger with
increasing target temperature. However, in the 4000C sample, the nitride peaks
appear somewhat weaker, perhaps indicating the existence of an optimum temperature
for growth of Fe N grains during ion implantation. Another striking feature of
these patterns is the change in relative intensity of the (110) and (200) a-Fe lines
with increasing temperature. This might be interpreted as an annealing effect
in our rolled polycrystalline samples. However, since the relative intensities
of the iron line are also quite different between the implanted and unimplanted
halves of each sample, we believe that the ion beam damage is itself inducing
orientation changes in the near-surface iron.

Although it is difficult to image iron nitride grains directly in the
SEM, distinct surface structures are visible (Figure 4). Furthermore, VIDS
performed in the SEM shows a dramatic decrease in nitrogen concentration with
increasing temperature (Figure 5). This suggests that at higher target
temperatures, nitrogen diffuses towards the surface and is lost either through
sputtering or evaporation. Indeed, other work has shown that diffusion towards
the surface strongly skews the final distribution of nitrogen implanted at
high target temperatures.[111

......
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Figure 4.
SEN micrographs illustrate surface morphology of nitrogen
implanted iron; 4a and b shov surfaces implanted at 2000C
and 3501C respectively.

Because of the increased defect density near the surface and instantaneous
thermal spikes caused by the ion beam, dopant atoms should diffuse prefer-
entially towards the surface. In addition, the target surface is severely
eroded by sputtering under our experimental conditions. A calculated dopant
profile,[12] using tabulated sputtering coefficients,[131 demonstrates the
importance of this effect (Figure 6). In this calculation, dopant atoms are
not alloyed to diffuse but the target surface is eroded to a depth of more
than 500 A. Thus it is reasonable that a significant fraction of the dopant
atoms are lost by sputtering after diffusion towards the surface and this
mechanism retards the grovth of crystalline grains at the higher target
temperatures.
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Figure 5.
VDS profiles indicate lover nitrogen concentration, due
to out-diffusion, vith increasing target temperature.
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Figure 6.
Calculated dopant profiles, taking surface sputtering into
account but ignoring dopant diffusion. Peak concentration
is 50.3 atomic 2 at a depth of 372 A. FV HM of the final
distribution is 782 A.

Increasing target temperature also increases the mobility of beam-
induced target vacancies and other defects. There is evidence that crystalline
grain growth during ion imp.antation is well correlated with the notion of
vacancies introduced by the ion beam.[14,15] The competition between dopant
diffusion to the surface and vacancy mobility should yield an optimum tempera-
ture for growth of iron nitride grains during ion implantation. Integral line
breadths, measured from the (200) reflections of y,'-Fe.N at various temperatures
are consistent with this phenomenon (Figure 7). The narrowest lines, which
are roughly as sharp as the underlying iron lines, indicate more perfect grains
while broader lines show the effects of strain or small crystallite size.
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SUMMARY

At this preliminary stage, the veil-resolved peaks in XRD patterns
offer a quantitative picture of crystallite growth in thin ion implanted
layers. The measured XRD patterns also contain information about orientation
effects during implantation. Since XRD is not sensitive to small grains,
complementary TEN information is required. The growth of grains large enough
to produce sharp XRD lines is surprising but measured XRD patterns offer
insight into the mechanisms involved and suggest an optimum target temperature
for crystalline grain growth in nitrogen implanted iron.
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